[Player] Add AI Pathfinding on a 2D grid to the player character
This commit is contained in:
547
Assets/External/AstarPathfindingProject/Generators/Utilities/BBTree.cs
vendored
Normal file
547
Assets/External/AstarPathfindingProject/Generators/Utilities/BBTree.cs
vendored
Normal file
@@ -0,0 +1,547 @@
|
||||
//#define ASTARDEBUG //"BBTree Debug" If enables, some queries to the tree will show debug lines. Turn off multithreading when using this since DrawLine calls cannot be called from a different thread
|
||||
|
||||
using System;
|
||||
using UnityEngine;
|
||||
|
||||
namespace Pathfinding {
|
||||
using Pathfinding.Util;
|
||||
|
||||
/// <summary>
|
||||
/// Axis Aligned Bounding Box Tree.
|
||||
/// Holds a bounding box tree of triangles.
|
||||
/// </summary>
|
||||
public class BBTree : IAstarPooledObject {
|
||||
/// <summary>Holds all tree nodes</summary>
|
||||
BBTreeBox[] tree = null;
|
||||
TriangleMeshNode[] nodeLookup = null;
|
||||
int count;
|
||||
int leafNodes;
|
||||
|
||||
const int MaximumLeafSize = 4;
|
||||
|
||||
public Rect Size {
|
||||
get {
|
||||
if (count == 0) {
|
||||
return new Rect(0, 0, 0, 0);
|
||||
} else {
|
||||
var rect = tree[0].rect;
|
||||
return Rect.MinMaxRect(rect.xmin*Int3.PrecisionFactor, rect.ymin*Int3.PrecisionFactor, rect.xmax*Int3.PrecisionFactor, rect.ymax*Int3.PrecisionFactor);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Clear the tree.
|
||||
/// Note that references to old nodes will still be intact so the GC cannot immediately collect them.
|
||||
/// </summary>
|
||||
public void Clear () {
|
||||
count = 0;
|
||||
leafNodes = 0;
|
||||
if (tree != null) ArrayPool<BBTreeBox>.Release(ref tree);
|
||||
if (nodeLookup != null) {
|
||||
// Prevent memory leaks as the pool does not clear the array
|
||||
for (int i = 0; i < nodeLookup.Length; i++) nodeLookup[i] = null;
|
||||
ArrayPool<TriangleMeshNode>.Release(ref nodeLookup);
|
||||
}
|
||||
tree = ArrayPool<BBTreeBox>.Claim(0);
|
||||
nodeLookup = ArrayPool<TriangleMeshNode>.Claim(0);
|
||||
}
|
||||
|
||||
void IAstarPooledObject.OnEnterPool () {
|
||||
Clear();
|
||||
}
|
||||
|
||||
void EnsureCapacity (int c) {
|
||||
if (c > tree.Length) {
|
||||
var newArr = ArrayPool<BBTreeBox>.Claim(c);
|
||||
tree.CopyTo(newArr, 0);
|
||||
ArrayPool<BBTreeBox>.Release(ref tree);
|
||||
tree = newArr;
|
||||
}
|
||||
}
|
||||
|
||||
void EnsureNodeCapacity (int c) {
|
||||
if (c > nodeLookup.Length) {
|
||||
var newArr = ArrayPool<TriangleMeshNode>.Claim(c);
|
||||
nodeLookup.CopyTo(newArr, 0);
|
||||
ArrayPool<TriangleMeshNode>.Release(ref nodeLookup);
|
||||
nodeLookup = newArr;
|
||||
}
|
||||
}
|
||||
|
||||
int GetBox (IntRect rect) {
|
||||
if (count >= tree.Length) EnsureCapacity(count+1);
|
||||
|
||||
tree[count] = new BBTreeBox(rect);
|
||||
count++;
|
||||
return count-1;
|
||||
}
|
||||
|
||||
/// <summary>Rebuilds the tree using the specified nodes</summary>
|
||||
public void RebuildFrom (TriangleMeshNode[] nodes) {
|
||||
Clear();
|
||||
|
||||
if (nodes.Length == 0) return;
|
||||
|
||||
// We will use approximately 2N tree nodes
|
||||
EnsureCapacity(Mathf.CeilToInt(nodes.Length * 2.1f));
|
||||
// We will use approximately N node references
|
||||
EnsureNodeCapacity(Mathf.CeilToInt(nodes.Length * 1.1f));
|
||||
|
||||
// This will store the order of the nodes while the tree is being built
|
||||
// It turns out that it is a lot faster to do this than to actually modify
|
||||
// the nodes and nodeBounds arrays (presumably since that involves shuffling
|
||||
// around 20 bytes of memory (sizeof(pointer) + sizeof(IntRect)) per node
|
||||
// instead of 4 bytes (sizeof(int)).
|
||||
// It also means we don't have to make a copy of the nodes array since
|
||||
// we do not modify it
|
||||
var permutation = ArrayPool<int>.Claim(nodes.Length);
|
||||
for (int i = 0; i < nodes.Length; i++) {
|
||||
permutation[i] = i;
|
||||
}
|
||||
|
||||
// Precalculate the bounds of the nodes in XZ space.
|
||||
// It turns out that calculating the bounds is a bottleneck and precalculating
|
||||
// the bounds makes it around 3 times faster to build a tree
|
||||
var nodeBounds = ArrayPool<IntRect>.Claim(nodes.Length);
|
||||
for (int i = 0; i < nodes.Length; i++) {
|
||||
Int3 v0, v1, v2;
|
||||
nodes[i].GetVertices(out v0, out v1, out v2);
|
||||
|
||||
var rect = new IntRect(v0.x, v0.z, v0.x, v0.z);
|
||||
rect = rect.ExpandToContain(v1.x, v1.z);
|
||||
rect = rect.ExpandToContain(v2.x, v2.z);
|
||||
nodeBounds[i] = rect;
|
||||
}
|
||||
|
||||
RebuildFromInternal(nodes, permutation, nodeBounds, 0, nodes.Length, false);
|
||||
|
||||
ArrayPool<int>.Release(ref permutation);
|
||||
ArrayPool<IntRect>.Release(ref nodeBounds);
|
||||
}
|
||||
|
||||
static int SplitByX (TriangleMeshNode[] nodes, int[] permutation, int from, int to, int divider) {
|
||||
int mx = to;
|
||||
|
||||
for (int i = from; i < mx; i++) {
|
||||
if (nodes[permutation[i]].position.x > divider) {
|
||||
mx--;
|
||||
// Swap items i and mx
|
||||
var tmp = permutation[mx];
|
||||
permutation[mx] = permutation[i];
|
||||
permutation[i] = tmp;
|
||||
i--;
|
||||
}
|
||||
}
|
||||
return mx;
|
||||
}
|
||||
|
||||
static int SplitByZ (TriangleMeshNode[] nodes, int[] permutation, int from, int to, int divider) {
|
||||
int mx = to;
|
||||
|
||||
for (int i = from; i < mx; i++) {
|
||||
if (nodes[permutation[i]].position.z > divider) {
|
||||
mx--;
|
||||
// Swap items i and mx
|
||||
var tmp = permutation[mx];
|
||||
permutation[mx] = permutation[i];
|
||||
permutation[i] = tmp;
|
||||
i--;
|
||||
}
|
||||
}
|
||||
return mx;
|
||||
}
|
||||
|
||||
int RebuildFromInternal (TriangleMeshNode[] nodes, int[] permutation, IntRect[] nodeBounds, int from, int to, bool odd) {
|
||||
var rect = NodeBounds(permutation, nodeBounds, from, to);
|
||||
int box = GetBox(rect);
|
||||
|
||||
if (to - from <= MaximumLeafSize) {
|
||||
var nodeOffset = tree[box].nodeOffset = leafNodes*MaximumLeafSize;
|
||||
EnsureNodeCapacity(nodeOffset + MaximumLeafSize);
|
||||
leafNodes++;
|
||||
// Assign all nodes to the array. Note that we also need clear unused slots as the array from the pool may contain any information
|
||||
for (int i = 0; i < MaximumLeafSize; i++) {
|
||||
nodeLookup[nodeOffset + i] = i < to - from ? nodes[permutation[from + i]] : null;
|
||||
}
|
||||
return box;
|
||||
}
|
||||
|
||||
int splitIndex;
|
||||
if (odd) {
|
||||
// X
|
||||
int divider = (rect.xmin + rect.xmax)/2;
|
||||
splitIndex = SplitByX(nodes, permutation, from, to, divider);
|
||||
} else {
|
||||
// Y/Z
|
||||
int divider = (rect.ymin + rect.ymax)/2;
|
||||
splitIndex = SplitByZ(nodes, permutation, from, to, divider);
|
||||
}
|
||||
|
||||
if (splitIndex == from || splitIndex == to) {
|
||||
// All nodes were on one side of the divider
|
||||
// Try to split along the other axis
|
||||
|
||||
if (!odd) {
|
||||
// X
|
||||
int divider = (rect.xmin + rect.xmax)/2;
|
||||
splitIndex = SplitByX(nodes, permutation, from, to, divider);
|
||||
} else {
|
||||
// Y/Z
|
||||
int divider = (rect.ymin + rect.ymax)/2;
|
||||
splitIndex = SplitByZ(nodes, permutation, from, to, divider);
|
||||
}
|
||||
|
||||
if (splitIndex == from || splitIndex == to) {
|
||||
// All nodes were on one side of the divider
|
||||
// Just pick one half
|
||||
splitIndex = (from+to)/2;
|
||||
}
|
||||
}
|
||||
|
||||
tree[box].left = RebuildFromInternal(nodes, permutation, nodeBounds, from, splitIndex, !odd);
|
||||
tree[box].right = RebuildFromInternal(nodes, permutation, nodeBounds, splitIndex, to, !odd);
|
||||
|
||||
return box;
|
||||
}
|
||||
|
||||
/// <summary>Calculates the bounding box in XZ space of all nodes between from (inclusive) and to (exclusive)</summary>
|
||||
static IntRect NodeBounds (int[] permutation, IntRect[] nodeBounds, int from, int to) {
|
||||
var rect = nodeBounds[permutation[from]];
|
||||
|
||||
for (int j = from + 1; j < to; j++) {
|
||||
var otherRect = nodeBounds[permutation[j]];
|
||||
|
||||
// Equivalent to rect = IntRect.Union(rect, otherRect)
|
||||
// but manually inlining is approximately
|
||||
// 25% faster when building an entire tree.
|
||||
// This code is hot when using navmesh cutting.
|
||||
rect.xmin = Math.Min(rect.xmin, otherRect.xmin);
|
||||
rect.ymin = Math.Min(rect.ymin, otherRect.ymin);
|
||||
rect.xmax = Math.Max(rect.xmax, otherRect.xmax);
|
||||
rect.ymax = Math.Max(rect.ymax, otherRect.ymax);
|
||||
}
|
||||
|
||||
return rect;
|
||||
}
|
||||
|
||||
[System.Diagnostics.Conditional("ASTARDEBUG")]
|
||||
static void DrawDebugRect (IntRect rect) {
|
||||
Debug.DrawLine(new Vector3(rect.xmin, 0, rect.ymin), new Vector3(rect.xmax, 0, rect.ymin), Color.white);
|
||||
Debug.DrawLine(new Vector3(rect.xmin, 0, rect.ymax), new Vector3(rect.xmax, 0, rect.ymax), Color.white);
|
||||
Debug.DrawLine(new Vector3(rect.xmin, 0, rect.ymin), new Vector3(rect.xmin, 0, rect.ymax), Color.white);
|
||||
Debug.DrawLine(new Vector3(rect.xmax, 0, rect.ymin), new Vector3(rect.xmax, 0, rect.ymax), Color.white);
|
||||
}
|
||||
|
||||
[System.Diagnostics.Conditional("ASTARDEBUG")]
|
||||
static void DrawDebugNode (TriangleMeshNode node, float yoffset, Color color) {
|
||||
Debug.DrawLine((Vector3)node.GetVertex(1) + Vector3.up*yoffset, (Vector3)node.GetVertex(2) + Vector3.up*yoffset, color);
|
||||
Debug.DrawLine((Vector3)node.GetVertex(0) + Vector3.up*yoffset, (Vector3)node.GetVertex(1) + Vector3.up*yoffset, color);
|
||||
Debug.DrawLine((Vector3)node.GetVertex(2) + Vector3.up*yoffset, (Vector3)node.GetVertex(0) + Vector3.up*yoffset, color);
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Queries the tree for the closest node to p constrained by the NNConstraint.
|
||||
/// Note that this function will only fill in the constrained node.
|
||||
/// If you want a node not constrained by any NNConstraint, do an additional search with constraint = NNConstraint.None
|
||||
/// </summary>
|
||||
public NNInfoInternal QueryClosest (Vector3 p, NNConstraint constraint, out float distance) {
|
||||
distance = float.PositiveInfinity;
|
||||
return QueryClosest(p, constraint, ref distance, new NNInfoInternal(null));
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Queries the tree for the closest node to p constrained by the NNConstraint trying to improve an existing solution.
|
||||
/// Note that this function will only fill in the constrained node.
|
||||
/// If you want a node not constrained by any NNConstraint, do an additional search with constraint = NNConstraint.None
|
||||
///
|
||||
/// This method will completely ignore any Y-axis differences in positions.
|
||||
/// </summary>
|
||||
/// <param name="p">Point to search around</param>
|
||||
/// <param name="constraint">Optionally set to constrain which nodes to return</param>
|
||||
/// <param name="distance">The best distance for the previous solution. Will be updated with the best distance
|
||||
/// after this search. Will be positive infinity if no node could be found.
|
||||
/// Set to positive infinity if there was no previous solution.</param>
|
||||
/// <param name="previous">This search will start from the previous NNInfo and improve it if possible.
|
||||
/// Even if the search fails on this call, the solution will never be worse than previous.
|
||||
/// Note that the distance parameter need to be configured with the distance for the previous result
|
||||
/// otherwise it may get overwritten even though it was actually closer.</param>
|
||||
public NNInfoInternal QueryClosestXZ (Vector3 p, NNConstraint constraint, ref float distance, NNInfoInternal previous) {
|
||||
var sqrDistance = distance*distance;
|
||||
var origSqrDistance = sqrDistance;
|
||||
|
||||
if (count > 0 && SquaredRectPointDistance(tree[0].rect, p) < sqrDistance) {
|
||||
SearchBoxClosestXZ(0, p, ref sqrDistance, constraint, ref previous);
|
||||
// Only update the distance if the squared distance changed as otherwise #distance
|
||||
// might change due to rounding errors even if no better solution was found
|
||||
if (sqrDistance < origSqrDistance) distance = Mathf.Sqrt(sqrDistance);
|
||||
}
|
||||
return previous;
|
||||
}
|
||||
|
||||
void SearchBoxClosestXZ (int boxi, Vector3 p, ref float closestSqrDist, NNConstraint constraint, ref NNInfoInternal nnInfo) {
|
||||
BBTreeBox box = tree[boxi];
|
||||
|
||||
if (box.IsLeaf) {
|
||||
var nodes = nodeLookup;
|
||||
for (int i = 0; i < MaximumLeafSize && nodes[box.nodeOffset+i] != null; i++) {
|
||||
var node = nodes[box.nodeOffset+i];
|
||||
// Update the NNInfo
|
||||
DrawDebugNode(node, 0.2f, Color.red);
|
||||
|
||||
if (constraint == null || constraint.Suitable(node)) {
|
||||
Vector3 closest = node.ClosestPointOnNodeXZ(p);
|
||||
// XZ squared distance
|
||||
float dist = (closest.x-p.x)*(closest.x-p.x)+(closest.z-p.z)*(closest.z-p.z);
|
||||
|
||||
// There's a theoretical case when the closest point is on the edge of a node which may cause the
|
||||
// closest point's xz coordinates to not line up perfectly with p's xz coordinates even though they should
|
||||
// (because floating point errors are annoying). So use a tiny margin to cover most of those cases.
|
||||
const float fuzziness = 0.000001f;
|
||||
if (nnInfo.constrainedNode == null || dist < closestSqrDist - fuzziness || (dist <= closestSqrDist + fuzziness && Mathf.Abs(closest.y - p.y) < Mathf.Abs(nnInfo.constClampedPosition.y - p.y))) {
|
||||
nnInfo.constrainedNode = node;
|
||||
nnInfo.constClampedPosition = closest;
|
||||
closestSqrDist = dist;
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
DrawDebugRect(box.rect);
|
||||
|
||||
int first = box.left, second = box.right;
|
||||
float firstDist, secondDist;
|
||||
GetOrderedChildren(ref first, ref second, out firstDist, out secondDist, p);
|
||||
|
||||
// Search children (closest box first to improve performance)
|
||||
if (firstDist <= closestSqrDist) {
|
||||
SearchBoxClosestXZ(first, p, ref closestSqrDist, constraint, ref nnInfo);
|
||||
}
|
||||
|
||||
if (secondDist <= closestSqrDist) {
|
||||
SearchBoxClosestXZ(second, p, ref closestSqrDist, constraint, ref nnInfo);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Queries the tree for the closest node to p constrained by the NNConstraint trying to improve an existing solution.
|
||||
/// Note that this function will only fill in the constrained node.
|
||||
/// If you want a node not constrained by any NNConstraint, do an additional search with constraint = NNConstraint.None
|
||||
/// </summary>
|
||||
/// <param name="p">Point to search around</param>
|
||||
/// <param name="constraint">Optionally set to constrain which nodes to return</param>
|
||||
/// <param name="distance">The best distance for the previous solution. Will be updated with the best distance
|
||||
/// after this search. Will be positive infinity if no node could be found.
|
||||
/// Set to positive infinity if there was no previous solution.</param>
|
||||
/// <param name="previous">This search will start from the previous NNInfo and improve it if possible.
|
||||
/// Even if the search fails on this call, the solution will never be worse than previous.</param>
|
||||
public NNInfoInternal QueryClosest (Vector3 p, NNConstraint constraint, ref float distance, NNInfoInternal previous) {
|
||||
var sqrDistance = distance*distance;
|
||||
var origSqrDistance = sqrDistance;
|
||||
|
||||
if (count > 0 && SquaredRectPointDistance(tree[0].rect, p) < sqrDistance) {
|
||||
SearchBoxClosest(0, p, ref sqrDistance, constraint, ref previous);
|
||||
// Only update the distance if the squared distance changed as otherwise #distance
|
||||
// might change due to rounding errors even if no better solution was found
|
||||
if (sqrDistance < origSqrDistance) distance = Mathf.Sqrt(sqrDistance);
|
||||
}
|
||||
return previous;
|
||||
}
|
||||
|
||||
void SearchBoxClosest (int boxi, Vector3 p, ref float closestSqrDist, NNConstraint constraint, ref NNInfoInternal nnInfo) {
|
||||
BBTreeBox box = tree[boxi];
|
||||
|
||||
if (box.IsLeaf) {
|
||||
var nodes = nodeLookup;
|
||||
for (int i = 0; i < MaximumLeafSize && nodes[box.nodeOffset+i] != null; i++) {
|
||||
var node = nodes[box.nodeOffset+i];
|
||||
Vector3 closest = node.ClosestPointOnNode(p);
|
||||
float dist = (closest-p).sqrMagnitude;
|
||||
if (dist < closestSqrDist) {
|
||||
DrawDebugNode(node, 0.2f, Color.red);
|
||||
|
||||
if (constraint == null || constraint.Suitable(node)) {
|
||||
// Update the NNInfo
|
||||
nnInfo.constrainedNode = node;
|
||||
nnInfo.constClampedPosition = closest;
|
||||
closestSqrDist = dist;
|
||||
}
|
||||
} else {
|
||||
DrawDebugNode(node, 0.0f, Color.blue);
|
||||
}
|
||||
}
|
||||
} else {
|
||||
DrawDebugRect(box.rect);
|
||||
int first = box.left, second = box.right;
|
||||
float firstDist, secondDist;
|
||||
GetOrderedChildren(ref first, ref second, out firstDist, out secondDist, p);
|
||||
|
||||
// Search children (closest box first to improve performance)
|
||||
if (firstDist < closestSqrDist) {
|
||||
SearchBoxClosest(first, p, ref closestSqrDist, constraint, ref nnInfo);
|
||||
}
|
||||
|
||||
if (secondDist < closestSqrDist) {
|
||||
SearchBoxClosest(second, p, ref closestSqrDist, constraint, ref nnInfo);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// <summary>Orders the box indices first and second by the approximate distance to the point p</summary>
|
||||
void GetOrderedChildren (ref int first, ref int second, out float firstDist, out float secondDist, Vector3 p) {
|
||||
firstDist = SquaredRectPointDistance(tree[first].rect, p);
|
||||
secondDist = SquaredRectPointDistance(tree[second].rect, p);
|
||||
|
||||
if (secondDist < firstDist) {
|
||||
// Swap
|
||||
var tmp = first;
|
||||
first = second;
|
||||
second = tmp;
|
||||
var tmp2 = firstDist;
|
||||
firstDist = secondDist;
|
||||
secondDist = tmp2;
|
||||
}
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Searches for a node which contains the specified point.
|
||||
/// If there are multiple nodes that contain the point any one of them
|
||||
/// may be returned.
|
||||
///
|
||||
/// See: TriangleMeshNode.ContainsPoint
|
||||
/// </summary>
|
||||
public TriangleMeshNode QueryInside (Vector3 p, NNConstraint constraint) {
|
||||
return count != 0 && tree[0].Contains(p) ? SearchBoxInside(0, p, constraint) : null;
|
||||
}
|
||||
|
||||
TriangleMeshNode SearchBoxInside (int boxi, Vector3 p, NNConstraint constraint) {
|
||||
BBTreeBox box = tree[boxi];
|
||||
|
||||
if (box.IsLeaf) {
|
||||
var nodes = nodeLookup;
|
||||
for (int i = 0; i < MaximumLeafSize && nodes[box.nodeOffset+i] != null; i++) {
|
||||
var node = nodes[box.nodeOffset+i];
|
||||
if (node.ContainsPoint((Int3)p)) {
|
||||
DrawDebugNode(node, 0.2f, Color.red);
|
||||
|
||||
if (constraint == null || constraint.Suitable(node)) {
|
||||
return node;
|
||||
}
|
||||
} else {
|
||||
DrawDebugNode(node, 0.0f, Color.blue);
|
||||
}
|
||||
}
|
||||
} else {
|
||||
DrawDebugRect(box.rect);
|
||||
|
||||
//Search children
|
||||
if (tree[box.left].Contains(p)) {
|
||||
var result = SearchBoxInside(box.left, p, constraint);
|
||||
if (result != null) return result;
|
||||
}
|
||||
|
||||
if (tree[box.right].Contains(p)) {
|
||||
var result = SearchBoxInside(box.right, p, constraint);
|
||||
if (result != null) return result;
|
||||
}
|
||||
}
|
||||
|
||||
return null;
|
||||
}
|
||||
|
||||
struct BBTreeBox {
|
||||
public IntRect rect;
|
||||
|
||||
public int nodeOffset;
|
||||
public int left, right;
|
||||
|
||||
public bool IsLeaf {
|
||||
get {
|
||||
return nodeOffset >= 0;
|
||||
}
|
||||
}
|
||||
|
||||
public BBTreeBox (IntRect rect) {
|
||||
nodeOffset = -1;
|
||||
this.rect = rect;
|
||||
left = right = -1;
|
||||
}
|
||||
|
||||
public BBTreeBox (int nodeOffset, IntRect rect) {
|
||||
this.nodeOffset = nodeOffset;
|
||||
this.rect = rect;
|
||||
left = right = -1;
|
||||
}
|
||||
|
||||
public bool Contains (Vector3 point) {
|
||||
var pi = (Int3)point;
|
||||
|
||||
return rect.Contains(pi.x, pi.z);
|
||||
}
|
||||
}
|
||||
|
||||
public void OnDrawGizmos () {
|
||||
Gizmos.color = new Color(1, 1, 1, 0.5F);
|
||||
if (count == 0) return;
|
||||
OnDrawGizmos(0, 0);
|
||||
}
|
||||
|
||||
void OnDrawGizmos (int boxi, int depth) {
|
||||
BBTreeBox box = tree[boxi];
|
||||
|
||||
var min = (Vector3) new Int3(box.rect.xmin, 0, box.rect.ymin);
|
||||
var max = (Vector3) new Int3(box.rect.xmax, 0, box.rect.ymax);
|
||||
|
||||
Vector3 center = (min+max)*0.5F;
|
||||
Vector3 size = (max-center)*2;
|
||||
|
||||
size = new Vector3(size.x, 1, size.z);
|
||||
center.y += depth * 2;
|
||||
|
||||
Gizmos.color = AstarMath.IntToColor(depth, 1f);
|
||||
Gizmos.DrawCube(center, size);
|
||||
|
||||
if (!box.IsLeaf) {
|
||||
OnDrawGizmos(box.left, depth + 1);
|
||||
OnDrawGizmos(box.right, depth + 1);
|
||||
}
|
||||
}
|
||||
|
||||
static bool NodeIntersectsCircle (TriangleMeshNode node, Vector3 p, float radius) {
|
||||
if (float.IsPositiveInfinity(radius)) return true;
|
||||
|
||||
/// <summary>\bug Is not correct on the Y axis</summary>
|
||||
return (p - node.ClosestPointOnNode(p)).sqrMagnitude < radius*radius;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Returns true if p is within radius from r.
|
||||
/// Correctly handles cases where radius is positive infinity.
|
||||
/// </summary>
|
||||
static bool RectIntersectsCircle (IntRect r, Vector3 p, float radius) {
|
||||
if (float.IsPositiveInfinity(radius)) return true;
|
||||
|
||||
Vector3 po = p;
|
||||
p.x = Math.Max(p.x, r.xmin*Int3.PrecisionFactor);
|
||||
p.x = Math.Min(p.x, r.xmax*Int3.PrecisionFactor);
|
||||
p.z = Math.Max(p.z, r.ymin*Int3.PrecisionFactor);
|
||||
p.z = Math.Min(p.z, r.ymax*Int3.PrecisionFactor);
|
||||
|
||||
// XZ squared magnitude comparison
|
||||
return (p.x-po.x)*(p.x-po.x) + (p.z-po.z)*(p.z-po.z) < radius*radius;
|
||||
}
|
||||
|
||||
/// <summary>Returns distance from p to the rectangle r</summary>
|
||||
static float SquaredRectPointDistance (IntRect r, Vector3 p) {
|
||||
Vector3 po = p;
|
||||
|
||||
p.x = Math.Max(p.x, r.xmin*Int3.PrecisionFactor);
|
||||
p.x = Math.Min(p.x, r.xmax*Int3.PrecisionFactor);
|
||||
p.z = Math.Max(p.z, r.ymin*Int3.PrecisionFactor);
|
||||
p.z = Math.Min(p.z, r.ymax*Int3.PrecisionFactor);
|
||||
|
||||
// XZ squared magnitude comparison
|
||||
return (p.x-po.x)*(p.x-po.x) + (p.z-po.z)*(p.z-po.z);
|
||||
}
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user